Extended function of plasmid partition genes: the Sop system of linear phage-plasmid N15 facilitates late gene expression.

نویسندگان

  • Nikolai V Ravin
  • Jérôme Rech
  • David Lane
چکیده

The mitotic stability of the linear plasmid-prophage N15 of Escherichia coli depends on a partition system closely related to that of the F plasmid SopABC. The two Sop systems are distinguished mainly by the arrangement of their centromeric SopB-binding sites, clustered in F (sopC) and dispersed in N15 (IR1 to IR4). Because two of the N15 inverted repeat (IR) sites are located close to elements presumed (by analogy with phage lambda) to regulate late gene expression during the lytic growth of N15, we asked whether Sop partition functions play a role in this process. In N15, a putative Q antiterminator gene is located 6 kb upstream of the probable major late promoter and two intrinsic terminator-like sequences, in contrast to lambda, where the Q gene is adjacent to the late promoter. Northern hybridization and lacZ reporter activity confirmed the identity of the N15 late promoter (p52), demonstrated antiterminator activity of the Q analogue, and located terminator sequences between p52 and the first open reading frame. Following prophage induction, N15 mutated in IR2 (downstream from gene Q) or IR3 (upstream of p52) showed a pronounced delay in lysis relative to that for wild-type N15. Expression of ir3(-)-p52::lacZ during N15 wild-type lytic growth was strongly reduced relative to the equivalent ir3(+) fusion. The provision of Q protein and the IR2 and SopAB proteins in trans to ir3(+)-p52::lacZ increased expression beyond that seen in the absence of any one of these factors. These results indicate that the N15 Sop system has a dual role: partition and regulation of late gene transcription during lytic growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic sequence and analysis of the atypical temperate bacteriophage N15.

N15 is a temperate bacteriophage that forms stable lysogens in Escherichia coli. While its virion is morphologically very similar to phage lambda and its close relatives, it is unusual in that the prophage form replicates autonomously as a linear DNA molecule with closed hairpin telomeres. Here, we describe the genomic architecture of N15, and its global pattern of gene expression, which reveal...

متن کامل

Characterization of the primary immunity region of the Escherichia coli linear plasmid prophage N15.

N15 is the only bacteriophage of Escherichia coli known to lysogenize as a linear plasmid. Clear-plaque mutations lie in at least two regions of the 46-kb genome. We have cloned, sequenced, and characterized the primary immunity region, immB. This region contains a gene, cB, whose product shows homology to lambdoid phage repressors. The cB3 mutation confers thermoinducibility on N15 lysogens, c...

متن کامل

The protelomerase of the phage-plasmid N15 is responsible for its maintenance in linear form.

The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularises via cohesive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). We demonstrate that this enzyme acts in vivo on spe...

متن کامل

Functional characterization of the repA replication gene of linear plasmid prophage N15.

The prophage of coliphage N15 is not integrated into the chromosome, but exists as a linear plasmid molecule with covalently closed ends. The only phage gene required for replication of circular N15 miniplasmids is repA (gene 37). Here we show that RepA-driven replication of the N15-based circular and linear miniplasmids is independent of host DnaB helicase protein, but requires the host DnaG p...

متن کامل

Bidirectional replication from an internal ori site of the linear N15 plasmid prophage.

The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 10  شماره 

صفحات  -

تاریخ انتشار 2008